Основные части двигателя внутреннего сгорания

Основные узлы автомобильных двигателей и их типы

Основные части двигателя внутреннего сгорания

Двигатель внутреннего сгорания — это машина, преобразующее тепловую энергию в механическую работу. Работа всех двигателей складывается из нескольких тактов двух или четырех. Такие двигателя так и называются — двухтактные и четырехтактные. Последовательность тактов в четырехтактном двигатели: 1.

впуск воздуха (дизель) или его смеси с топливом (бензин); 2. сжатие рабочей смеси; 3. рабочий ход при сгорании рабочей смеси; 4. выпуск отработавших газов. Все двигателя внутреннего сгорания состоят из нескольких основных механизмов: 1. Газораспределительный механизм (ГРМ); 2.

Кривошипно-шатунный механизм (КШМ);

Два основных механизма связаны между собой механическим путем, с помощью привода ГРМ.

Газораспределительный механизм

Механизм газораспределения служит для своевременной подачи топливовоздушной смеси, а также для вывода отработавших газов с цилиндров двигателя. Вся работа ГРМ завязана с тактами двигателя и разбросана по определенным углам положения коленчатого вала. Привод механизма ГРМ осуществляется множеством способов, но все они берут свое начало от хвостовика коленчатого вала. Обычно на легковых автомобилях привод ГРМ осуществляется через зубчатый ремень или цепь, на грузовых автомобилях с помощью зубчатого зацепления. Очевидно, что гибкий ремень имеет множество недостатков: низкий срок службы, изменение длины, вследствие чего нарушается работа механизма, обрыв ремня во время работы и т.д. Цепная передача лишена большей части этих недостатков, но все же имеет свои — высокий уровень шума, высокая цена ремонта. Но не стоит забывать, что срок службы цепи намного выше ременной передачи. Такой тип привода, как зубчатая передача, в настоящее время используется только на грузовых автомобилях и во время эксплуатации почти не требует внимания, однако также не лишен недостатков: высокий уровень шума (при использовании прямозубого зацепления) и очень высокая стоимость ремонта. Все недостатки зубчатой передачи начинают проявляться толкьо при очень значительном пробеге, как правило сам автомобиль не доживает то этого момента.

Кривошипно-шатунный механизм

Кривошипно-шатунный механизм (КШМ) служит для преобразования возвратно-поступательных движений во вращательные. Этот механизм состоит из нескольких основных подвижных деталей: коленчатый вал, шатун, поршень, поршневой палец, маховик. Поршень совершает возвратно-поступательные движения, именно на него давит рабочая смесь в момент такта расширения, сжатия, выпуска.

Поршень передает усилие от газов на шатун, а также принимает силу от шатуна в момент сжатия. Поршень обычно изготавливают из алюминиевых сплавов — такой подход необходим для снижения веса детали и увеличения коэффициента теплоотвода. Шатун — главной отличительной особенностью шатуна является его комбинированное движение.

Верхняя головка шатуна совершает только возвратно-поступательное движение вместе с поршнем, а нижняя головка — вращательное движение вместе с шатунной шейкой коленчатого вала. Также шатун передает усилие разного вектора, в такт сжатия усилие передается от коленчатого вала к поршню, а при такте расширения наоборот, от поршня к коленчатому валу.

Коленчатый вал — эта деталь КШМ является основной, именно на нее приходится значительная часть нагрузок: кручение, изгиб, срез и т.д. Надежность коленчатого вала очень важна, поэтому к нему предъявляют много требований и выполняют со значительным коэффициентом запаса прочности.

Маховик служит для сглаживания неравномерности вращения коленчатого вала (неравномерность получается из-за разности сил в КШМ, в зависимости от тактов) и представляет собой аккумулятор (накопитель) кинетической энергии. Обычно маховик — это массивное вращающееся колесо.
К неподвижным деталям относятся блок цилиндров, гильзы цилиндров, крышки коренных шеек.

Механизм (КШМ) работает в очень тяжелых условиях и соответственно чаще всех остальных выходит из строя.

Система питания двигателей внутреннего сгорания

Как известно, двигатель внутреннего сгорания работает на тепловой энергии. Тепловую энергию можно получить множеством способов, один из таких способов это сжигание природного топлива (бензина, дизтоплива, керосина и т.п.) в камере сгорания двигателя. Бензин — это продукт нефтеперегонки, наиболее легкая фракция нефти, получаемая с помощью технологии гидрокрекинга. Дизтопливо (в народе называемое соляркой) более тяжелый продукт перегонки нефти.

Двигатель внутреннего сгорания обычно сориентирован на определенный тип топлива — либо бензин, либо дизтопливо. Но существуют и такие типы двигателей, которые могут использовать в качестве теплоносителя разные виды топлива, обычно такие двигатели применяются на военной технике. Для использования такого топлива в двигателях внутреннего сгорания необходима система подачи, система питания.

Система питания служит для подачи топлива в камеру сгорания (дизель) или приготовления рабочей смеси в не камере сгорания (бензиновые двигателя), обычно инжекторная система или карбюраторная система. В дизелях система питания очень сложна и работа ее заключается в подаче под высоким давлением распыленного топлива в камеру сгорания, где в дальнейшем происходит его полное (в теории) сгорание с выделением теплоты.

Инжекторная система — это система внешнего смесеобразования, образование рабочей смеси происходит вне камеры сгорания, обычно во впускном коллекторе. В настоящее время все чаще стали использоваться системы с прямым впуском, работа такой системы очень схожа с системой питания дизелей, но алгоритм ее работы кардинально отличается от дизельной.

Карбюраторное смесеобразование — наиболее устаревший вид смесеобразования и, как правило, в настоящее время редко используется, однако в грузовых автомобилях такой тип системы питания продолжают использовать.

Преимущества и недостатки

Бензиновый двигатель — это низкоэффиективная тепловая машина, которая способна преобразовывать всего лишь около 20-30% тепловой энергии топлива в полезную работу. Дизельный двигатель — более эффективная машина, обычно он имеет коэффициент полезного действия в 30-40%, дизели с турбонаддувом и промежуточным охлаждением свыше 50% (например, MAN S80ME-C7 тратит только 155 гр на кВт*ч, достигая эффективности 54,4%).

Дизельный двигатель из-за использования впрыска высокого давления не предъявляет требований к летучести топлива, что позволяет использовать в нём низкосортные тяжелые масла. Дизельный двигатель не может развивать высокие обороты — смесь не успевает догореть в цилиндрах. Это приводит к снижению удельной мощности двигателя на 1 л объёма, а значит, и к снижению удельной мощности на 1кг массы двигателя.

Это послужило причиной малого распространения дизелей в авиации (только некоторые бомбардировщики Юнкерс, а также советский тяжелый бомбардировщик Пе-8 и Ер-2, оснащавшиеся авиационными дизелями АЧ-30 и АЧ-40 конструкции А.Д.Чаромского и Т.М.Мелькумова). На максимальной эксплуатационной мощности смесь в дизеле не догорает, приводя к выбросу облаков сажи («тепловоз дает медведя»).

Дизельный двигатель не имеет дроссельной заслонки, регулирование мощности осуществляется регулированием количества впрыскиваемого топлива. Это приводит к отсутствию снижения давления в цилиндрах на низких оборотах. Потому дизель выдаёт высокий вращающий момент при низких оборотах, что делает автомобиль с дизельным двигателем более «отзывчивым» в движении, чем такой же автомобиль с бензиновым двигателем.

По этой причине в настоящее время большинство грузовых автомобилей оборудуются дизельными двигателями. Это является преимуществом также и в двигателях морских судов, так как высокий крутящий момент при низких оборотах делает более лёгким эффективное использование мощности двигателя.

Читайте также  Принцип работы топливной системы дизельного двигателя
Индикаторная диаграмма дизельного двигателя без наддува

По сравнению с бензиновыми двигателями, в выхлопных газах дизельного двигателя, как правило, меньше окиси углерода (СО), но теперь, в связи с применением каталитических конвертеров на бензиновых двигателях, это преимущество не так заметно.

Основные токсичные газы, которые присутствуют в выхлопе в заметных количествах это углеводороды (НС или СН) , оксиды (окислы) азота (NOх) и сажа (или её производные) в форме чёрного дыма. Они могут привести к астме и раку лёгких.

Больше всего загрязняют атмосферу дизели грузовиков и автобусов, которые часто являются старыми и неотрегулированными.

Другим важным аспектом, касающимся безопасности, является то, что дизельное топливо нелетучее (то есть легко не испаряется) и, таким образом, вероятность восгорания у дизельных двигателей намного меньше, тем более, что в них не используется система зажигания.

Вместе с высокой топливной экономичностью это стало причиной широкого применения дизелей на танках, поскольку в повседневной небоевой эксплуатации уменьшался риск возникновения пожара в моторном отделении из-за утечек топлива.

Меньшая пожароопасность дизельного двигателя в боевых условиях является мифом, поскольку при пробитии брони снаряд или его осколки имеют температуру, сильно превышающую температуру вспышки паров дизельного топлива и также способны достаточно легко поджечь вытекшее горючее.

Детонация смеси паров дизельного топлива с воздухом в пробитом топливном баке по своим последствиям сравнима со взрывом боекомплекта, в частности, у танков Т-34 она приводила к разрыву сварных швов и выбиванию верхней лобовой детали бронекорпуса. С другой стороны, дизельный двигатель в танкостроении уступает карбюраторному в плане удельной мощности (мощности, снимаемой с единицы массы мотора), а потому в ряде случаев (высокая мощность при малом объёме моторного отделения) более выигрышным может быть использование именно карбюраторного силового агрегата.
Индикаторная диаграмма бензинового двигателя без наддува

Источник: https://www.StuDiplom.ru/article/DVS.html

Устройство автомобилей

Основные части двигателя внутреннего сгорания


Анализ развития энергетических установок для автомобильного транспорта показывает, что в настоящее время двигатель внутреннего сгорания (ДВС) является основным силовым агрегатом, и его дальнейшее совершенствование имеет большие перспективы.

Автомобильный поршневой двигатель внутреннего сгорания представляет собой комплекс механизмов и систем, служащих для преобразования тепловой энергии сгорающего в цилиндрах топлива в механическую работу.

Основу механической части любого поршневого двигателя составляют кривошипно-шатунный механизм (КШМ) и газораспределительный механизм (ГРМ). Кроме того, тепловые двигателя оснащены специальными системами, каждая из которых выполняет определенные функции по обеспечению бесперебойной работы двигателя.

К таким системам относятся:

  • система питания;
  • система зажигания (в двигателях с принудительным воспламенением рабочей смеси);
  • система пуска;
  • система охлаждения;
  • система смазки (смазочная система).

Каждая из перечисленных систем состоит из отдельных механизмов, узлов и устройств, а также включает специальные коммуникации (трубопроводы или электропровода).

***

Кривошипно-шатунный механизм двигателя

Кривошипно-шатунный механизм (КШМ) двигателя преобразует возвратно-поступательное движение поршня во вращательное движение коленчатого вала. Очевидно, что передавать вращательное движение между отдельными механизмами, агрегатами и узлами автомобиля значительно проще, чем циклическое поступательное движение, которое описывает поршень, перемещаясь в цилиндре.

Кроме того, конечное звено трансмиссии автомобиля – его колеса – перемещают автомобиль посредством вращения, поэтому назначение КШМ вполне понятно.

Можно допустить, что для транспортного средства, перемещающегося по дороге с помощью, например, шагающих устройств или циклических движителей, преобразование поступательного движения во вращательное не является обязательным.

Но автомобиль — колесное транспортное средство (по определению), что обуславливает присутствие кривошипно-шатунного механизма в конструкции автомобильного двигателя.

***

Газораспределительный механизм двигателя

Газораспределительный механизм (ГРМ) обеспечивает поступление в цилиндры двигателя заряда рабочей смеси (в двигателях с внешним смесеобразованием) или воздуха (в двигателях с внутренним смесеобразованием), а также для удаления (выпуска) отработавших газов и продуктов сгорания топлива.

При этом газораспределительный механизм должен обеспечивать обмен газов в цилиндрах в строго определенное время, соответственно тактам работы двигателя, и в необходимом количестве, обеспечивающем качественный состав рабочей смеси для полного сгорания топлива и получения максимального эффекта от выделяемой при этом теплоты.

***

Система питания двигателя

В цилиндрах автомобильного двигателя сгорает смесь воздуха (точнее – кислорода, содержащегося в воздухе) и горючего, в качестве которого чаще всего используются дизельное топливо (солярка), газовое топливо, либо бензин.

Система питания предназначена для подачи топлива и воздуха в цилиндры двигателя в нужном количестве и определенных пропорциях.

Различают два основных типа систем питания двигателей: системы с внешним смесеобразованием, в которых воздух и топливо смешиваются вне цилиндра двигателя, а также с внутренним смесеобразованием, в которых топливо и воздух подаются в цилиндры раздельно и смешиваются внутри цилиндра.

К первому типу можно отнести системы питания, оснащенные специальным смесительным устройством – карбюратором, обеспечивающим распыл топлива в воздушной струе и перемешивание компонентов смеси, которая затем поступает в цилиндры двигателя. К двигателям с внешним смесеобразованием относятся некоторые типы двигателей с впрыском бензина (инжекторные двигатели с центральным или распределенным впрыском во впускной коллектор), а также многие типы газовых двигателей.

Ко второму типу относятся дизельные и инжекторные системы питания с непосредственным впрыском, обеспечивающие заполнение цилиндров двигателя атмосферным воздухом с последующим впрыском топлива с помощью специальных устройств непосредственно в камеру сгорания, где и происходит смешивание топлива с кислородом воздуха. При этом воспламенение смеси в дизельных двигателях осуществляется посредством сильного сжатия самовоспламенением, а в инжекторных — принудительно, от искры.
Некоторые типы газовых двигателей тоже используют внутреннее смесеобразование.

***

Система зажигания

Назначение этой системы – принудительное воспламенение рабочей смеси в бензиновых и газовых двигателях. Дизельные двигатели не нуждаются в системе зажигания – воспламенение рабочей смеси в них осуществляется благодаря высокой степени сжатия воздуха в цилиндрах, который в буквальном смысле становится раскаленным.

В современных двигателях чаще всего используется воспламенение смеси искровым электрическим разрядом, однако, это – не единственное возможное техническое решение – так, например, в конструкциях первых тепловых двигателей внутреннего сгорания применялись запальные трубки, воспламеняющие рабочую смесь горящим веществом.
Возможны и другие способы поджигания смеси, однако, наиболее удобной для практического применения в настоящее время считается электроискровая система зажигания.

***



Система пуска обеспечивает вращение коленчатого вала двигателя при его запуске. Это необходимо для начала функционирования механизмов и систем, обеспечивающих работу двигателя – кривошипно-шатунного и газораспределительного механизмов, систем питания и зажигания.

Для запуска современных автомобильных двигателей чаще всего применяются системы пуска с помощью привода от специального электрического двигателя – стартера. Этот способ запуска двигателя внутреннего сгорания является удобным, надежным и легко осуществимым. Однако, существуют и другие технические решения этой задачи, например, посредством пневматического мотора, работающего на запасе сжатого воздуха в ресиверах (специальных баллонах) автомобиля или полученного от небольшого компрессора с электроприводом.

Простейшая система пуска двигателя – заводная рукоятка, с помощью которой водитель (или его помощник) проворачивают коленчатый вал, обеспечивая тем самым начало работы механизмов и систем двигателя. В недалеком прошлом заводная рукоятка являлась непременной принадлежностью, которую водитель брал с собой в путь.

Читайте также  Двигатель от мотокосы на лодку

Однако, при несомненной простоте этого «устройства», комфорта и удобства использования автомобиля такой метод пуска двигателя не добавляет, поэтому в кабине современного автомобиля заводную рукоятку (или, как ее называли в шутку водители – «кривой стартер») вы найдете вряд ли.

Кроме того, с помощью ручного пуска сложно запустить дизель – не позволяет высокая степень сжатия и вероятность травмирования водителя при запуске.

***

Система охлаждения двигателя

Как и следует из названия, эта система предназначена для поддержания баланса температуры работающего двигателя.

Сжигание рабочей смеси в цилиндрах сопровождается сильным нагревом узлов и деталей двигателя, которые нуждаются в постоянном охлаждении, чтобы избежать перебоев в работе и поломок, обусловленных, например, температурными расширениями металла или даже прогоранием деталей и элементов конструкций.

Наиболее распространены два типа систем охлаждения, применяемые в автомобильных двигателях – жидкостная и воздушная; о принципах их действия можно догадаться по названию.

Из теплотехники известно, что для эффективного охлаждения двигателя необходим теплообменник, имеющий большую площадь поверхности для передачи тепла.

В двигателях с жидкостным охлаждением в качестве такого теплообменника используется радиатор, состоящий из большого количества трубок, сквозь которые перемещается нагретая жидкость, отдавая тепло стенкам.

Суммарная площадь поверхности трубок в радиаторе очень большая, а эффективность отвода тепла повышается специальным вентилятором, установленным рядом с радиатором.

В двигателях с воздушным охлаждением для этих целей применяют оребрение поверхностей наиболее нагреваемых деталей (цилиндров и их головок), в результате чего площадь теплообмена значительно увеличивается.

Воздушные системы охлаждения на современных быстроходных двигателях применяются редко из-за низкой эффективности (по сравнению с жидкостной системой охлаждения).

Чаще всего охлаждение воздухом используют в низкооборотистых, мотоциклетных или небольших двигателях внутреннего сгорания, не предназначенных для выполнения тяжелой механической работы, а также для работы в условиях хорошего обдува (самолетные ДВС).

***

Система смазки двигателя

Система смазки предназначена для уменьшения потерь механической энергии на преодоление сил трения, возникающих между сопрягаемыми подвижными деталями в кривошипно-шатунном и газораспределительном механизмах.
Кроме того, смазывание деталей способствует уменьшению их износа и частичному охлаждению.

Чаще всего в конструкции автомобильных двигателей применяется смазка деталей под давлением, когда из отдельного резервуара масло подается по трубопроводам и каналам с помощью насоса к деталям, нуждающимся в смазке.
Некоторые детали механизмов смазываются благодаря разбрызгиванию масла или посредством периодического окунания в масляную ванну.

***

Представленный ниже видеоролик поможет лучше понять общее устройство поршневого двигателя внутреннего сгорания.

***

Кривошипно-шатунный механизм



Олимпиады и тесты

Источник: http://k-a-t.ru/PM.01_mdk.01.01/3_dvs_2/

Общее устройство поршневых двигателей внутреннего сгорания

Наибольшее распространение на современных тракторах и автомобилях получили поршневые двигатели внутреннего сгорания. Их работа основана на окислении жидкого топлива путем сжигания последнего в изолированных объемах (цилиндрах); выделяющаяся при этом тепловая энергия преобразуется здесь в механическую энергию вращающегося вала двигателя.

Рис. 1. Прииципиальиая схема поршневого двигателя внутреннего сгорания:1 — картер; 2 — цилиндр; 3 — впускной клапан; 4 камера сгорания; 5 — свеча зажигания (Или Аопсунка); 6 — головка цилиндра; 7 — выпускной клапан; 8 — поршень; 9 — шатун; 10 — кривошип

Поршневой двигатель внутреннего сгорания, принципиальная схема которого изображена на рисунке 2, состоит из следующих основных элементов: картера, цилиндра, поршня с шатуном, вала с кривошипом, головки цилиндра, впускного и выпускного клапанов, камеры сгорания и свечи зажигания (или форсунки).

Рекламные предложения на основе ваших интересов:

Картер представляет собой замкнутый объем в нижней части двигателя. В полости картера вращается коленчатый вал с кривошипами. Над картером расположен цилиндр. Внутри цилиндра возвратно-поступательно перемещается поршень. Шарнирная связь поршня с кривошипом осуществляется через промежуточное звено — шатун. Свежий заряд топлива и воздуха (или чистого воздуха) поступает через впускной канал и расположенный в нем впускной клапан в камеру сгорания, где перед воспламенением подвергается сжатию.

Действительный двигатель в отличие от его принципиальной схемы имеет более сложное устройство. Он состоит из ряда механизмов и систем, имеющих специальное назначение, но работающих согласованно.

Кривошипно-шатунный механизм преобразует возвратно-поступательное движение поршней во вращательное движение коленчатого вала. Коленчатый вал в процессе работы воспринимает и суммирует механическую энергию всех поршней двигателя.

Механизм газораспределения обеспечивает своевременный впуск свежего заряда путем открытия впускного клапана, надежное разобщение полости цилиндра и камеры сгорания от атмосферы при сжатии и расширении за счет плотного перекрытия клапанами впускного и выпускного каналов, а также очистку цилиндра от продуктов сгорания путем открытия выпускного клапана. С механизмом газораспределения связан декомпрессионный механизм, который путем постоянного сообщения полости цилиндра с атмосферой облегчает проворачивание коленчатого вала, исключая сжатие, а также обеспечивает продувку цилиндров.

Система питания служит для приготовления топливо-воздушной смеси такого состава, который бы обеспечивал экономичную и устойчивую работу двигателя на различных режимах. Автоматическое регулирование подачи топлива или топливовоздушной смеси в зависимости от скоростного и нагрузочного режимов работы двигателя осуществляется системой регулирования (регулятором), непосредственно связанной с системой питания.

Система зажигания обеспечивает своевременное воспламенение сжатого в цилиндре заряда, она присуща только карбюраторному двигателю.

Система охлаждения поддерживает оптимальный тепловой режим работы двигателя.

Система смазки уменьшает трение между деталями двигателя путем подвода смазки на трущиеся поверхности, а также обеспечивает частичный отвод теплоты от тех деталей двигателя, которые не могут охлаждаться системой охлаждения.

Система пуска предназначена для надежного и достаточно быстрого запуска двигателя в различных метеорологических и эксплуатационных условиях.

Рассмотрим устройство поршневых ДВС на примере одноцилиндрового карбюраторного двигателя. Двигатель состоит из кривошипно-шатунного механизма, механизма газораспределения и систем: охлаждения, питания, смазки, зажигания и пуска.

Основная часть кривошипно-шатунного механизма — цилиндр, вдоль оси которого перемещается поршень с кольцами. С помощью поршневого пальца поршень соединен с верхней головкой шатуна. Нижняя головка шатуна установлена на коленчатом валу. Сверху цилиндр закрыт головкой, а снизу к нему примыкают картер и поддон. На заднем конце коленчатого вала установлен маховик, а на переднем — шестерня.

От нее через шестерню приводится в действие механизм газораспределения, основным элементом которого является распределительный вал с кулачками, управляющими работой впускного и выпускного клапанов. Система питания двигателя включает в себя карбюратор в котором приготовляется смесь топлива с воздухвм. Карбюратор установлен на впускном трубопроводе, соединенным с отверстием клапана.

Выпускной трубопровод соединен с отверстием клапана.

Одна из основных частей системы охлаждения — водяной насос. Он направляет охлаждающую жидкость в полость (водяную рубашку), окружающую наиболее нагретые части двигателя. Система смазки работает от насоса, который приводится в действие от шестерни.

Масло из поддона подается к трущимся поверхностям через трубопровод. Для обеспечения принудительного воспламенения смеси топлива с воздухом в цилиндре двигателя служит система зажигания. Воспламенение происходит от электрической искры, возникающей между электродами свечи.

Система пуска двигателя на рис. 2 не показана.

Принципиальное устройство дизеля во многом аналогично устройству рассмотренного карбюраторного двигателя. Отличием являются отсутствие системы зажигания и измененная система питания двигателя.

Рис. 2. Одноцилиндровый карбюраторный двигатель

Рекламные предложения:

Читать далее: Роторно-поршневые двигатели

Категория: — Тракторы-2

→ Справочник → Статьи → Форум

Источник: http://stroy-technics.ru/article/obshchee-ustroistvo-porshnevykh-dvigatelei-vnutrennego-sgoraniya

Двигатель внутреннего сгорания

Основные части двигателя внутреннего сгорания

Автомобильные двигатели чрезвычайно разнообразны. Технология, которая применяется при разработке и запуске в производство силовых агрегатов, имеет богатую историю. Требования современности вынуждают производителей ежегодно внедрять в свои проекты доработки и модернизировать имеющиеся технологии.

Читайте также  Основной недостаток поршневых двигателей внутреннего сгорания

Двигатель внутреннего сгорания имеет устройство и принцип работы, способный обеспечивать высокую мощность и длительный период эксплуатации — от пользователя требуется только минимально необходимое обслуживание и своевременный мелкий ремонт.

При первом взгляде сложно представить, как работает двигатель: слишком много взаимосвязанных механизмов собранно в одном небольшом пространстве. Но при детальном изучении и анализе связей в этой системе работа двигателя автомобиля оказывается предельно простой и понятной.

В состав двигателя автомобиля входит ряд узлов, имеющих важное значение и обеспечивающих выполнение рабочих функций всей системы.

Блок цилиндров иногда называют корпусом или рамой всей системы. Описание двигателя не обходится без изучения данного элемента конструкции. Именно в этой части мотора обустроена система связанных каналов, предназначеных для смазки и создания необходимой температуры двигателя внутреннего сгорания.

Верхняя часть корпуса поршня имеет каналы для колец. Сами поршневые кольца подразделяются на верхние и нижние. Исходя из выполняемых функций, данные кольца называют компрессионными. Крутящий момент двигателя определяется прочностью и работой рассмотренных элементов.

Нижние кольца поршня играют важную роль для обеспечения ресурса двигателя. Нижние кольца выполняют 2 роли: сохраняют герметичность камеры сгорания и являются уплотнителями, которые предотвращают проникновение масла внутрь камеры сгорания.

Двигатель автомобиля представляет собой систему, в которой осуществляется передача энергии между механизмами с минимальными потерями ее величины на различных этапах. Поэтому кривошипно-шатунный механизм становится одним из важнейших элементов системы. Он обеспечивает передачу возвратно-поступательной энергии от поршня на коленвал.

В целом, принцип работы двигателя достаточно прост и претерпел мало фундаментальных изменений за период существования. В этом просто нет необходимости — некоторые усовершенствования и оптимизации позволяют достигать лучших результатов в работе. Концепция же всей системы неизменна.

Крутящий момент двигателя создается за счет выделяемой при сгорании топлива энергии, которая передается от камеры сгорания к колесам по соединительным элементам. В форсунках топливо передается в камеру сгорания, где происходит его обогащение воздухом. Свеча зажигания создает искру, которая мгновенно воспламеняет образовавшуюся смесь. Так происходит небольшой взрыв, который обеспечивает работы двигателя.

В результате такого действия происходит образования большого объема газов, стимулируя к совершению поступательных движений. Так формируется крутящий момент двигателя. Энергия от поршня передается на коленвал, который передает движение на трансмиссию, а после этого, специальная система шестеренок переносит движение на колеса.

Порядок работы работающего двигателя незатейлив и при исправных связующих элементах гарантирует минимальные потери энергии. Схема работы и строение каждого механизма основаны на преобразовании созданного импульса в практически используемый объем энергии. Ресурс двигателя определяется износостойкостью каждого звена.

Принцип работы двигателя внутреннего сгорания

Двигатель легкового автомобиля выполняется в виде одного из типов систем внутреннего сгорания. Принцип действия двигателя может отличаться по некоторым показателям, что служит основой для разделения моторов на различные типы и модификации.

В качестве определяющих параметров, служащих для разделения силовых агрегатов на категории, служат:

  • рабочий объем,
  • количество цилиндров,
  • мощность системы,
  • скорость вращения узлов,
  • применяемое для работы топливо и др.

Разобраться в том, как работает двигатель, просто. Но по мере изучения всплывают новые показатели, которые вызывают вопросы. Так, часто можно встретить разделение двигателей по числу тактов. Что это такое и как влияет на работу машины?

Устройство двигателя автомобиля основано на четырехтактовой системе. Эти 4 такта равны по времени — за весь цикл поршень дважды поднимается вверх в цилиндре и дважды опускается вниз. Такт берет начало в тот момент, когда поршень находится в верхней или нижней части. Механики называют эти точки ВМТ и НМТ — верхняя и нижняя мертвые точки соответственно.

Такт № 1 — впуск. По мере движения вниз, поршень втягивает в цилиндр наполненную топливом смесь. Работа системы происходит при открытом клапане впуска. Мощность двигателя автомобиля определяется количеством, размерами и временем, которое клапан открыт.

В отдельных моделях работа педали газа увеличивает период нахождения клапана в открытом состоянии, что позволяет увеличить объем топлива, попадающего в систему. Такое устройство двигателей внутреннего сгорания обеспечивает сильное ускорение работы системы.

Такт № 2 — сжатие. На этом этапе поршень начинает свое движение вверх, что приводит к сжатию полученной в цилиндр смеси. Она сживается ровно до объемов камеры сгорания топлива. Эта камера представляет собой пространство между верхней частью поршня и верхом цилиндра в момент нахождения поршня в ВМТ. Клапаны впуска в этот момент работы прочно закрыты.

https://www.youtube.com/watch?v=QsKDpzFmxK0

От плотности закрытия зависит качество сжатия смеси. Если сам поршень, или цилиндр, или кольца поршней потерты и не в надлежащем состоянии, то качество работы и ресурс двигателя значительно снизятся.

Такт № 3 — рабочий ход. Этот этап начинается с ВМТ. Система зажигания гарантирует воспламенение топливной смеси и обеспечивает выделение энергии. Происходит взрыв смеси, при котором высвобождается энергия. И за счет увеличения объема происходит выталкивание поршня вниз. Клапаны при этом закрыты. Технические характеристики двигателя во многом зависят от протекания третьего такта работы мотора.

Такт № 4 — выпуск. Окончание цикла работы. Движение поршня вверх обеспечивает выталкивание газов. Таким образом, осуществляется вентиляция цилиндра. Этот такт важен для обеспечения ресурса двигателя.

Двигатель имеет принцип работы, основанный на распределении энергии от взрывов газов, требует внимания к созданию всех узлов.

Работа двигателя внутреннего сгорания циклична. Вся энергия, которая создается в процессе выполнения работы на всех 4 тактах работы поршней, направляется на организацию работы автомобиля.

Варианты конструкций внутреннего двигателя

Характеристика двигателя зависит от особенностей его конструкции. Внутреннее сгорание — основной тип физического процесса, протекающего в системе мотора на современных автомобилях. За период развития машиностроения успешно реализовано несколько типов ДВС.

Устройство бензинового двигателя разделяет систему на 2 типа — инжекторные двигатели и карбюраторные модели. Также в производстве есть несколько типов карбюраторов и систем впрыска. Основа работы — сжигание бензина.

Характеристика бензинового двигателя выглядит предпочтительнее. Хотя для каждого пользователя есть свои личные приоритеты и преимущества от работы каждого двигателя. Бензиновый двигатель внутреннего сгорания является одним из самых распространенных в современном автомобилестроении. Порядок работы мотора прост и не отличается от классической интерпретации.

Дизельные двигатели основаны на применении подготовленного дизельного топлива. Оно попадает в цилиндры через форсунки. Главное преимущество дизельного двигателя заключается в отсутствии необходимости электричества для сжигания топлива. Оно требуется только для запуска двигателя.

Газовый двигатель применяет для работы сжиженные и сжатые газы, а также некоторые другие типы газов.

Узнать какой ресурс у двигателя на вашем авто лучше всего у производителя. Примерную цифру разработчики озвучивают в сопроводительных документах на транспортное средство. Здесь содержится вся актуальная и точная информация о моторе. В паспорте вы узнаете технические параметры мотора, сколько весит двигатель и всю информацию о движущем агрегате.

Срок службы двигателя зависит от качества обслуживания, интенсивности использования. Заложенный разработчиком срок эксплуатации подразумевает внимательное и бережное отношение с машиной.

Что значит двигатель? Это ключевой элемент в автомобиле, который призван обеспечить его движение. Надежность и точность работы всех узлов системы гарантирует качество движения и безопасность эксплуатации машины.

Характеристики двигателей различаются в широких пределах, несмотря на то. Что принцип внутреннего сгорания топлива остается неизменным. Так разработчикам удается удовлетворять потребности покупателей и реализовывать проекты по улучшению работы автомобилей в целом.

Средний ресурс двигателя внутреннего сгорания составляет несколько сотен тысяч километров. При таких нагрузках от всех составных частей системы требуется прочность и точная совместная работа. Поэтому известная и детально изученная концепция внутреннего сгорания постоянно подвергается доработкам и внедрениям новых подходов.

Ресурс двигателей различается в широком диапазоне. Порядок работы, при этом, общий (с небольшими отклонениями от стандарта). Несколько может различаться вес двигателя и отдельные характеристики.

Современный двигатель внутреннего сгорания имеет классическое устройство и досконально изученный принцип работы. Поэтому механикам не составляет труда решить любую проблему в кратчайшие сроки.

Ремонтные работы усложняются в том случае, если поломка не была устранена сразу. В таких ситуациях порядок работы механизмов может, нарушен окончательно и потребуется серьезная работа по восстановлению. Ресурс двигателя после грамотного ремонта не пострадает.

Источник: http://AvtoDvigateli.com/vidy/dvigatel-vnutrennego-sgoraniya.html